
GL Garrad Hassan

FINO – Technische und ökologische Forschung in Nord und Ostsee

Andreas Beeken, 2012-03-21 – Offshoretage 2012, Rostock-Warnemünde

Projekt Überblick

- FINO Forschung in Nord- und Ostsee
- Finanziert durch das Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit
- Ziel: Installation von
 Forschungsplattformen in der unmittelbaren N\u00e4he zuk\u00fcnnftiger Offshore Windpark Projekte
- Plattformen dienen zur Erfassung der Umwelteinflüsse im Offshore-Bereich
- Generierung einer umfassenden meteorologischen, hydrografischen, technischen und ökologischen Datenbank

Ziele des FINO-Forschungsprogramms

Das übergeordnete Ziel aller drei FINO-Plattformen und der damit verbunden Forschung ist es, Informationen zu erlangen zu:

- 1. den Verhältnissen der Offshore-Umgebung, um deren Einfluss auf geplante Offshore-Vorhaben besser vorhersagen zu können.
- 2. den möglichen Auswirkungen von neuen Offshore-Technologien auf die maritime Umwelt.

Schaffen von Wissen zur Verbesserung von Design, Bau und Betrieb von Offshore-Windparks.

GLGH Engagement in FINO

- Koordination von Bau, Errichtung und Inbetriebnahme der FINO 1 (2001 – 2003)
- Operative Betriebsführung, Wartungsarbeiten, Koordination von Schiff und/oder Helikopter-Ausfahrten zu den Plattformen (FINO 1 von 2003 bis 2011, FINO 2 seit 2010)
- Koordination laufender und zukünftiger Forschungsprojekte (FINO 2)
- Mast-Design, Entwurf und Betrieb des meteorologischen Messprogramms auf FINO 3 (seit 2006)

Standort Emden Wilhelmshaven

Technische Fakten

Forschungs Plattform	Standort	Betreiber	Inbetriebnahme	Höhe	Wasser- Tiefe	Abstand zur Küste	Gründungs -Struktur	Plattform- Größe	Heli- Plattform
FINO 1	Nordsee	FuE GmbH, FH Kiel	September 2003	101 m	28 m	45 km	Jacket	16*16 m	ja
FINO 2	Ostsee	GL GH	Mai 2007	101 m	24 m	31 km	Monopile	12.2*12.2 m	nein
FINO 3	Nordsee	FuE GmbH, FH Kiel	August 2009	120 m	23 m	80 km	Monopile	13*13 m	ja

- redundante Energieversorgung (bis zu 4 Generatoren), 10.000 l Tank im Monopile oder Container
- Generatoren, Betriebs-, Mess- und Kommunikationssysteme sind in wetterfesten und klimatisierten Containern untergebracht
- Datenübertragung erfolgt via Satellit und Richtfunk; Online-Überwachung

Forschung auf FINO

Meteorologie

Windgeschwindigkeit und –richtung auf verschiedenen Ebenen bis in ca. 100 m Höhe, Temperatur, Luftfeuchte, Luftdruck, Global- und UV-Strahlung, Niederschlag

Ozeanografie

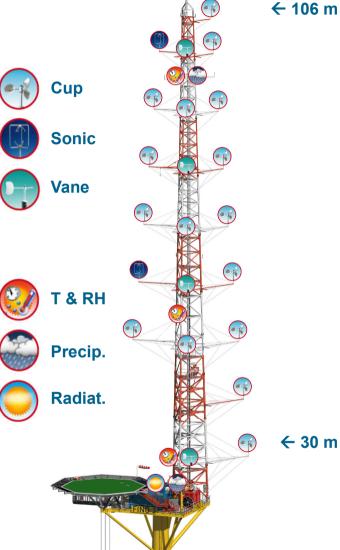
Wellenhöhe, -periode und -richtung, Strömungsgeschwindigkeit und -richtung, Wasserstand, Wassertemperatur, Salinität, Sauerstoffgehalt...

Weitere technische Untersuchungen

Beanspruchung der Struktur, akustische Messungen, Überwachung Schiffsverkehr

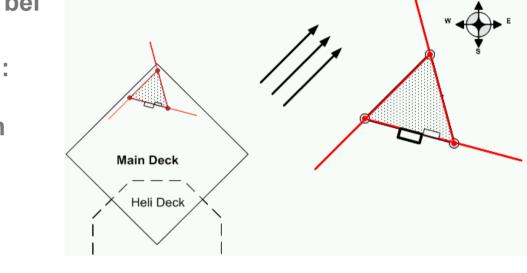
Biologische Daten

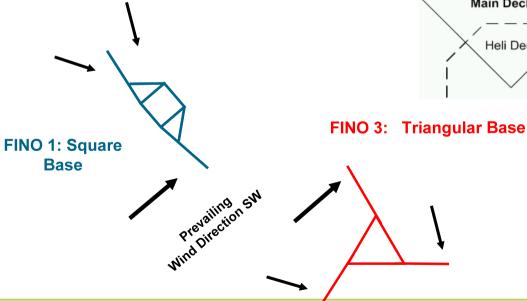
Mariner Bewuchs der Unterwasserstruktur, Benthos, Fische und Meeressäuger Zugverhalten von Vögeln, Vogelzählungen



FINO3 Mast- & Mess-Design

- Dreieckiger Mast in Nord-Ecke
- Drei mögliche Ausleger-Richtungen
- Höchstes Cup 106 m Höhe (nicht Mastspitze)
- 9 Windmess-Ebenen von 30 bis 106 m: 16 Cups, 2 Sonics, 3 Vanes
- 50, 70 und 90 m Ebene mit 3 Cups
- Temperatur- & Feuchtesensoren auf 3 Ebenen
- 2 Temperatur-Differenz-Messungen
- Luftdruck- und Niederschlagssensoren
- Haupt- und Backup-Datenlogger
- Versorgung per Dieselgenerator und Solarpanel

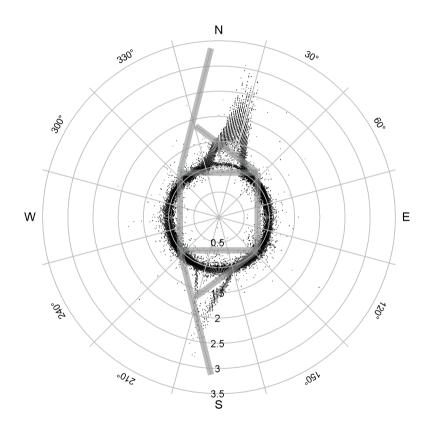




FINO 1 vs. FINO 3 - Mast und Ausleger Layout

- Signifikante
 Umströmungseffekte bei
 FINO1 und FINO2
- Aus den Erfahrungen: Wechsel zu einer dreieckigen Mastform

Main Wind Direction SW



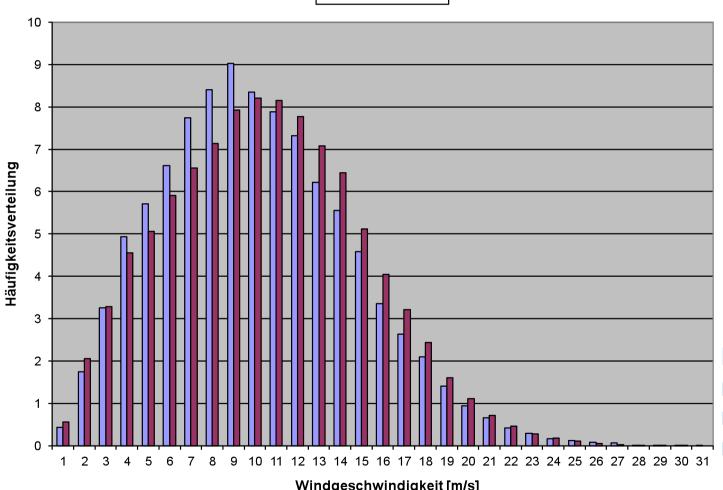
FINO 2 vs. FINO 3 - Masteffekte

Messmast 105° (C >)

FINO 2: Maststruktur in den Daten erkennbar

Quelle: Wind-Consult

FINO3: Freie Anströmung für jeden Windrichtungssektor



Windverteilung FINO 1 vs. FINO 2 von 2008 - 2011

FINO 1

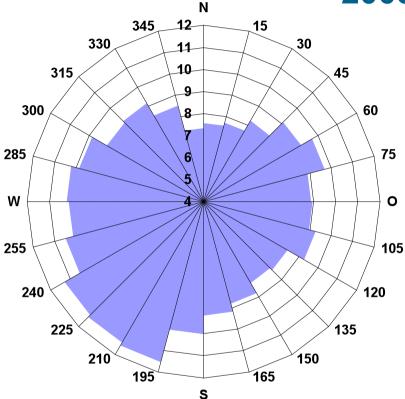
9,67 m/s mean 31,6 m/s max.

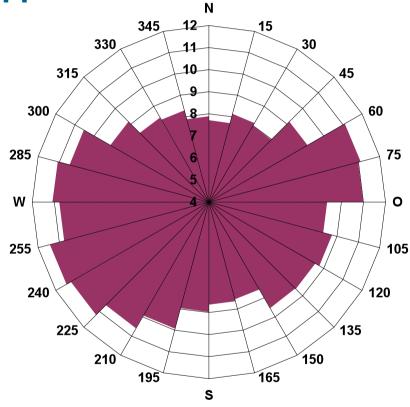
FINO 2

9,99 m/s mean: 29,5 m/s max. max. gust 39,1 m/s

FINO1 long term 9.7 m/s mean 36 m/s max. max. gust 43 m/s

Windgeschwindigkeit [m/s]

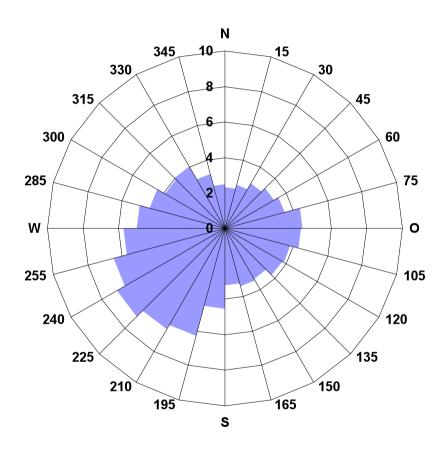


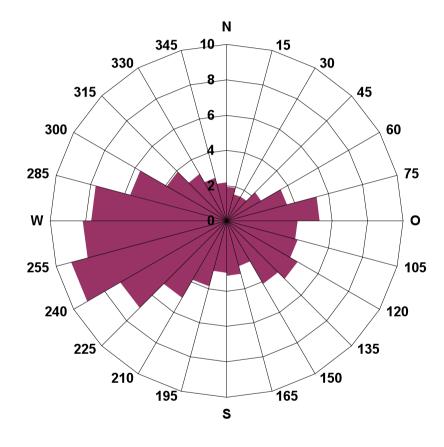


Verteilung der mittleren Windgeschwindigkeit in Abhängigkeit der Windrichtung, FINO 1 vs. FINO 2,

2008 - 2011

FINO 1, WS 100 m / WD 90 m

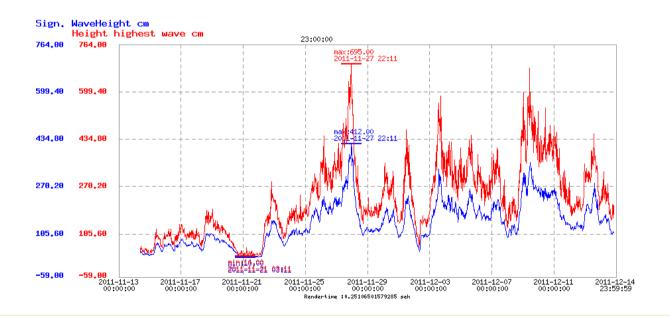

FINO 2, WS 100 m / WD 90 m



Windrichtungsverteilung FINO 1 vs. FINO 2 2008 -2011

FINO 1, WD 90 m

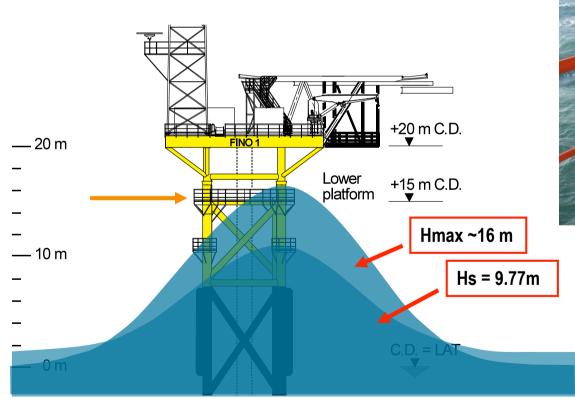
FINO 2, WD 90 m



FINO 2 Wellenmessungen

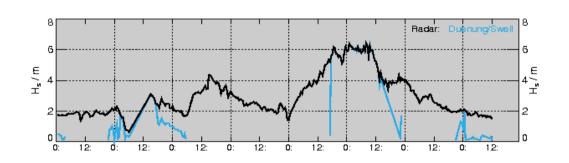
- Historische Bojendaten werden derzeit vom BSH ausgewertet und in der FINO- Datenbank zur Verfügung gestellt
- Live-Messungen seit November 2011 möglich
- Ausfall der Boje am 14. Dezember 2011, wetterbedingt bisher noch keine Bergung möglich

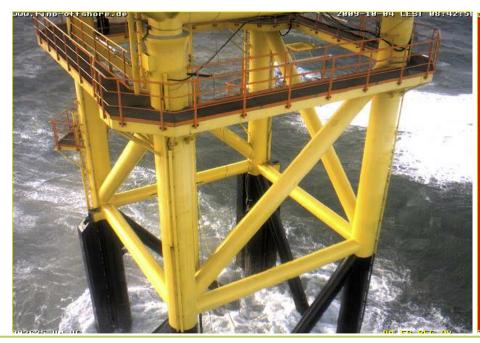
FINO 2 Extremereignisse



- Wellenhöhen in Ostsee im Mittel geringer als in Nordsee
- Mehr Frost und Eistage im Ostseeraum
- Stark eingeschränkte Zutrittsmöglichkeiten während der Wintermonate

FINO1 - Extreme Wellenhöhen: Sturm "Britta", 01 Nov. 2006 → Schäden an der Plattform

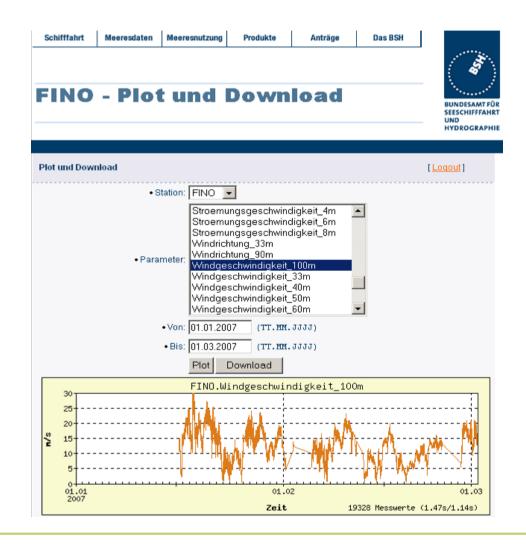




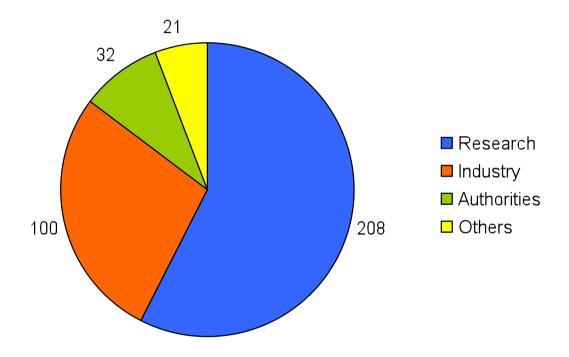
Sturm "Sören", 04 Oktober 2009

- Hs = 6,40 m
- Hmax = 10,24 m
- Hauptwellenperiode 11,8 s (korrespondiert mit 200 m Wellenlänge)

Hauptwellenrichtung 320°

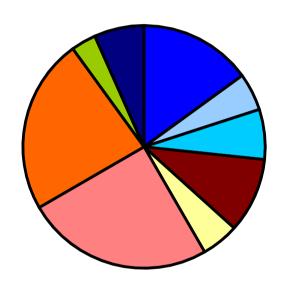


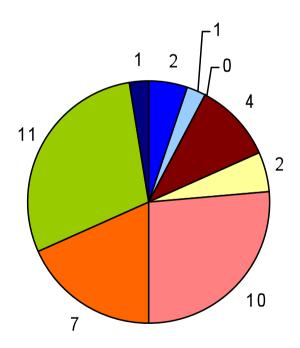
FINO Datenbank – Datenbereitstellung für die Öffentlichkeit



FINO Datenbanknutzer

361 registrierte Datenbanknutzer

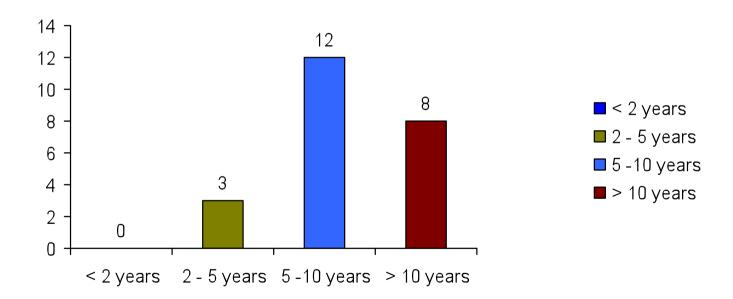

(Stand Juni 2010)



Welche Verwendung finden die FINO Daten?

Industry

- Wind physics
- Ocean physic
- Environmental monitoring
- meteorological models
- □ oceanographic models
- Energy yield assessments
- Load assessments
- Access and logistics
- others



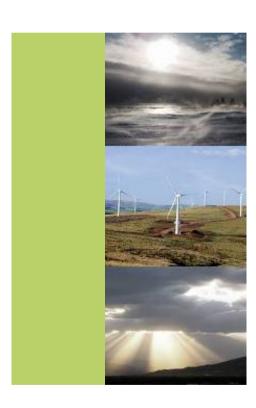
Besteht die Notwendigkeit für längere Zeitserien?

65 % aller Befragten stimmten zu!

Für wie lange?

Zusammenfassung und Ausblick

- Umfangreiches Messprogramm mit hohen Ansprüchen an die Plattform und die Ausrüstung
- Verlässlicher Betrieb und Lieferung von Daten
- Ergebnisse der FINO-Messungen werden ausgiebig genutzt
- Messungen und Untersuchungen haben zu einem besseren Verständnis der Offshore-Umgebung und den potentiellen Einfluss auf zukünftige Offshore-Windparks geführt
- Fortsetzung der Langzeitmessungen
- (Zukünftige) Windparks in unmittelbarer Umgebung der FINO- Plattformen geben die einzigartige Möglichkeit, Windparkeffekte auf das Windprofil sowie die Auswirkungen auf die gesamte Offshore-Umgebung zu untersuchen



Renewable energy consultants

GL Garrad Hassan

