Verbesserung der Wettbewerbsfähigkeit von Jackets durch innovative Fertigungsstrategien

Increasing competitiveness of Jackets by innovative manufacturing strategies

Dr. S. Brauser / Salzgitter Mannesmann Renewables Dr. M. Los / St3 Offshore

SALZGITTERAG Stahl und Technologie

Agenda

- 1 Salzgitter Group
- 2 Salzgitter Supply Chain Concept
- 3 Serial manufacturing of Jackets
 - Robotized welding of nodes
 - Robotized grinding of nodes

Salzgitter Group

Company portfolio

3

Salzgitter Group

Company portfolio - Penetration Offshore Wind

Competitive edge of Offshore Wind Tubular Companies with Bilfinger Cooperation

Salzgitter Offshore Wind Expertise Cooperation + SALZGITTERAG tabl und Technolo St3 Offshore Plate / Tube **Strip Steel** Section Steel

- Salzgitter Flachstahl: Mannesmann Base material for HFI and Spiral tubes
- Grobblech
 - Ilsenburg Grobblech Base material for Monopiles and large diameter tubes
- Europipe: LSAW pipes up to OD 1524/ wt 50mm (marked leader)
- MLP: HFI pipes up to OD 610 / wt 25.4mm
- SMGR: Spiral pipes up to OD 1676 / wt 25.4mm

- **Combined Development of**
 - modular Jacket design and secondary steel system
 - Robotized welding of nodes
- **Combined market approach**
 - Complete foundation structure including TP will be market by BMO
 - Jacket components such as nodes and pipes will be market by Salzgitter

Salzgitter supply chain

- Supply of component kid composed of
 - Standardized tubes
 - K, Y, X- nodes
 - Sections / frames
- Jackets can be build out of sections, or from components at a site or port local to a wind farm
- Applicable for all Jacket fabricators and without any design preferences

SALZGITTERAG

Agenda

- 1 Salzgitter Group
- 2 Salzgitter Supply Chain Concept
- 3 Serial manufacturing of Jackets
 - Robotized welding of nodes
 - Robotized grinding of nodes

Serial manufacturing of Jackets

Standardized tube

- Based on pipeline application
- Fully automated welding and NDT •
- High productivity (up to 200 pipes / shift)
- Low geometrical tolerances \rightarrow reduction • in welding / assembling time
- High cost competitiveness against JCO pipes \rightarrow 20% to 30%

Robotized welding of nodes

- Tubular welds are cost driver within jacket manufacturing
- Robotized welding of nodes leads to:
 - acceleration within production
 - uniform weld properties
 - improvement of fatigue by inside welding and optimized weld shape

Assembly of components by orbital welding

 Cost efficient welding of butt joints

 Significant reduction in cost/time compared to manual welding

Automated fabrication of nodes – general approach

- Replacement of manual welding by robots
 - \rightarrow reduction in welding time and cost
 - \rightarrow sustainable quality improvements by controlled processes (heat input, weld profile)
 - \rightarrow efficient inside welding
- Welding of stubs onto chord by
 - Manipulator: Movement of node enables welding always in 1G/PA Position
 - \rightarrow high welding speed, lower welding defect rate
 - Robot unit: Utilization of high productive tandem-welding

Automated fabrication of nodes – general approach

Main welding unit at St3

Pre-fabrication of nodes – general approach

- 1) Semi-automatic loading of chord / stubs
- 2) Manual tack welding

- Pre-heating + Robotized inside root welding → backing layer
- 4) Outside welding First outside layer (hot pass) to be carried out with sufficiently high energy to guarantee:
 - full penetration weld
 - prevention of root failure
 - Filling passes with high deposition rate
 - Cap layer with oscillated welding head to generate smooth weld profile

Loading of the main pipe

Automatic positioning + tack welding of stub

Further Potentials – under investigation

Optimization of weld geometry / notch effect

- Reliable modeling of weld geometry such that
 - smooth transition tangent to the parent material → negligible notch effect / fatigue improved
 - Monitoring /memorizing of surface notches / weld profile via camera system for each stub

Inside welding of nodes (applicable)

- Currently not used for Jacket manufacturing do to point to point approach
- Robotized pre-fabrication of nodes enables efficient inside welding
- Improvement of fatigue strength especially when outside weld profile / notch effect is improved
- Backing layer: guarantee of full penetration weld

Weld geometry of robotized nodes

Smooth shape - Stress distribution due to out of plane moment

Normal weld shape - Stress distribution due to out of plane moment

Improved weld shape

- leads to a damage reduction by factor 1,77÷1,96
- Weight reduction of 5÷10 % for whole primary steel

Weld toe grinding

Figure D-35 Example of S-N curves (D-curve) for a butt weld in as welded condition and improved by grinding or hammer peening

Automated weld toe grinding – feasibility

3D Profil-Scan

V. Automated grinding of nodes segment

Next Steps

- Calculation of mass reduction of Jacket based on DNVGL rules
- Full Scale node grinding test

