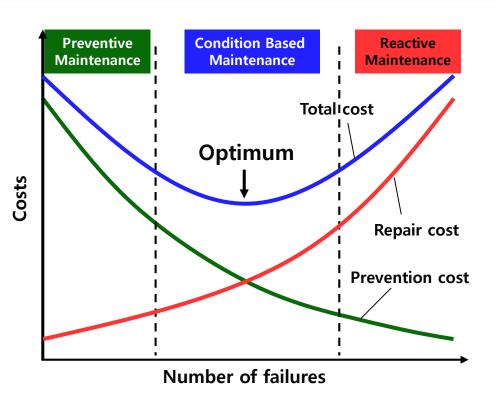


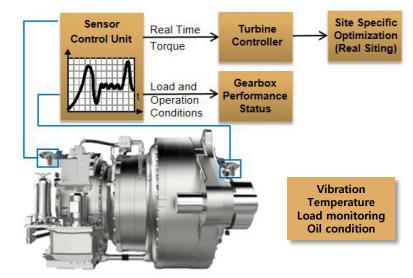
Offshoretage 01./02.03.18 in Warnemünde

Sicherer Betrieb durch Erkennung von kritischen Betriebszuständen und bedarfsgerechten Ölwechsel über eine kontinuierliche 24/7 Erfassung und Auswertung der Ölqualität

Prof. Dr. Manfred Mauntz Dr. rer. nat. Jörn Peuser

Gliederung

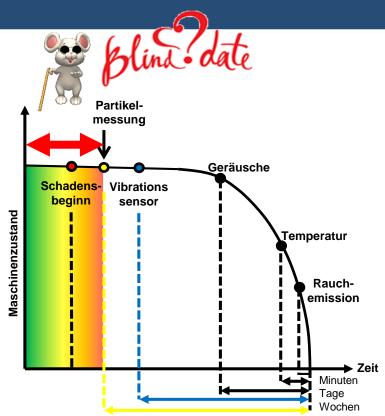

- Wartungsstrategien Motivation
- Bestehende Messverfahren
- Messparameter WearSens WS 3000
- Offshore WS 3000 Installation
- Offshore Felddaten
 - vor / nach / während eines Ölwechsels / Schadensereignis
- Condition Based Maintenance
 - Sicherer und bedarfsorientierter Ölwechsel mit DNV·GL zertifiziertem Container System
- Eine neue Perspektive für die Windparkbetreiber & die technische Betriebsführung


Wartungsstrategien

Optimaler Zeitpunkt Verhältnis Kosten / Ausfälle

→ Zustandsbasierte Wartung

Bestehende Messverfahren

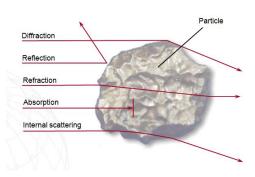


Bestehende Messverfahren zeigen nur den schon vorhandenen Schaden an

Standardlösungen geben erst Informationen nach Eintritt des Schadens.

Bestehende Messverfahren: Partikelzähler

Messverfahren:


Optische Partikelzählung

Vorteil:

Einfaches System

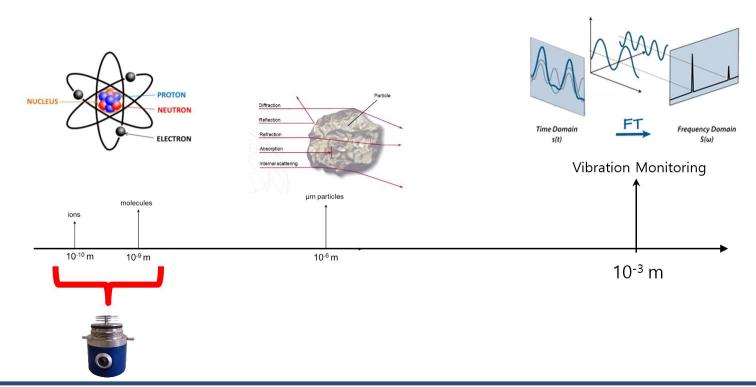
Nachteil:

- Sensitiv erst bei Partikeln > 4µm
- Geringe Aussagekraft bei Beginn einer Schädigung und kritischen Betriebszuständen.
- Durch Mikro-Pittings werden bereits vorab eine Vielzahl von Partikeln < 4µm in das Öl abgegeben und nicht detektiert.

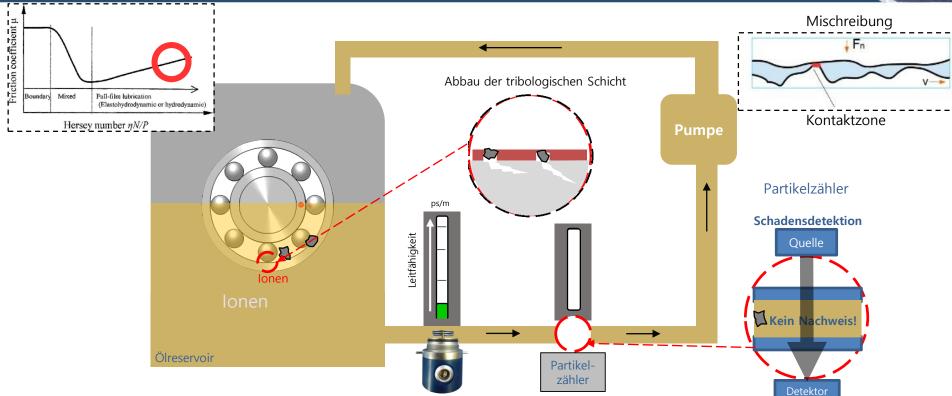
Bestehende Messverfahren: Schwingungsanalyse

Vorteil:

gezielte Analyse einer Baugruppe / eines bestimmten Lagers

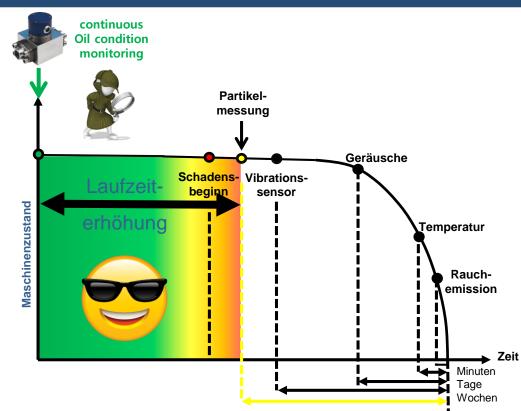

Nachteil:

- Installation von diversen Sensoren auf der WEA verteilt.
- Ausfall eines Sensors führt zu Fehlmessung / Fehlinterpretation
- komplexe Handhabung / Anbringung / Auswertung
- Erneutes Anlernen der Sensorik nach Reparaturen/Systemveränderungen (WEA oder Sensor)
 kann bis zu 3 Monaten dauern
- Je nach Einstellung der Grenzparameter: ≤ 60% bis ≤ 80% Nachweiswahrscheinlichkeit


Größenverhältnisse: Partikel vs. Moleküle vs. Ionen

Vergleich: Optische Partikelmessung und WearSens®

WearSens®


Das vorgestellte Sensor-system erlaubt eine kontinuierliche Überwachung bereits ab dem 1. Tag:

- Schadensprävention
- Laufzeiterhöhung

durch Last-Optimierung

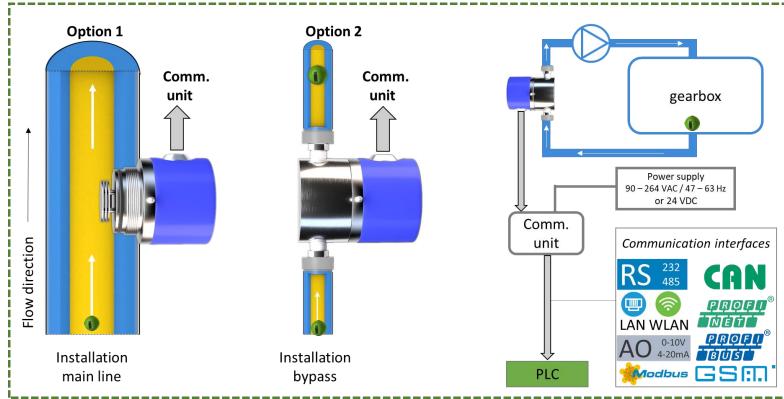
 Entwicklung und Optimierung neuer Getriebekomponenten

durch erweiterte Prüfstandtests

Messprinzip WearSens® WS 3000

Gewonnene Daten:

- ID von Last / Überlast / kritischen Betriebszuständen: WS_i COP
- ID Kontamination
- ID Additiv-Verbrauch
- Determination des fälligen Ölwechsel (CBM): WS_i OCI



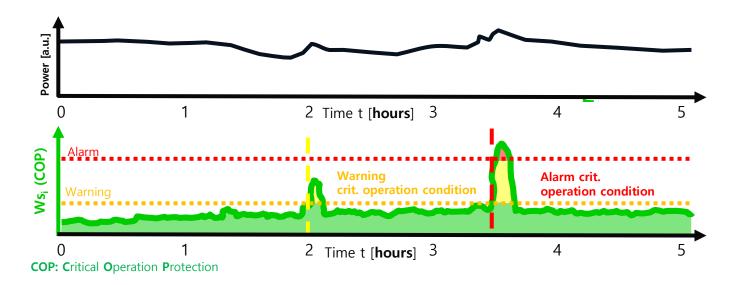
Messdaten:

- Elektrische Leitfähigkeit κ
- Dielektrizitätszahl ε_r
- Temperatur T
- selbstlernende, adaptive Temperaturkompensation von κ und ϵ_r
- Höchste Präzision aufgrund einer innovativen Messmethode.
- Adaptiver Temperaturkompensationsalgorithmus läuft kontinuierlich im Hintergrund.
- Hochverschlüsselter Datentransfer zum Server.

WearSens® Installation

Wie identifiziert WearSens® kritische Betriebszustände?

WearSens Index WS_i (COP)


COP: Critical Operation Protection

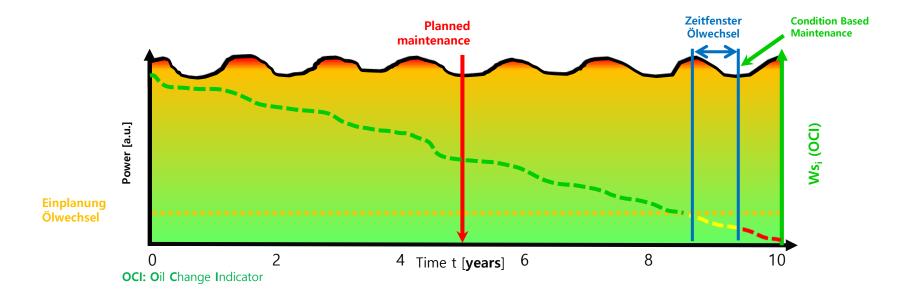
Critical
Operation
Protection

WearSens® Index WS_i

Die Belastung des Schmierstoffs basiert auf den aktuellen Lastzuständen / Fluktuationen und Maschineneinstellungen und führt zu signifikanten Änderungen der Leitfähigkeit und der Dielektrizitätszahl. Gradienten der gemessenen Signale sind nur ein Teil der Peak Identifikation.

Wie ermöglicht WearSens® eine zustandsbasierte Wartung?

WearSens Index WS_i (OCI)



OCI: Oil Change Indicator

Oil Change Indicator

Condition Based Maintenance mit WearSens® - Monitoring der Ölalterung

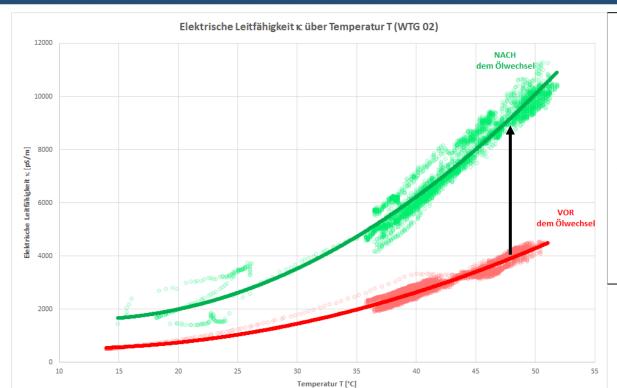
Ölwechselcontainer SWOC 1.0

- Beheizte Tanks:
 - Frischöl: 2000l
 - Spülöl: 500l
 - Altöl: 2500l
- Autarke Antriebseinheit
- Saug und Druckpumpe
- Schläuche
- Nottrennkupplung

Alles Zertifiziert nach:

- DNV 2.7-1 Offshore Container
- DNV 2.7-2 Offshore Service Modules

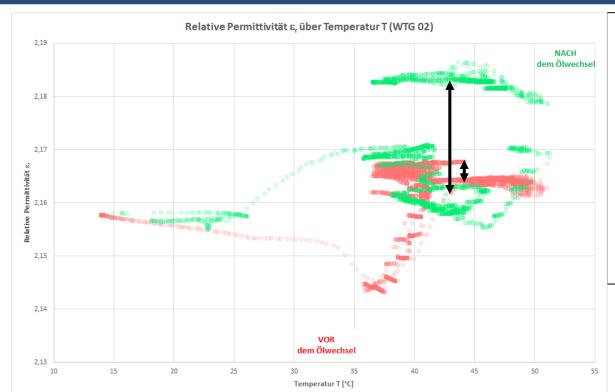
Installation – Hardware (Offshore)


Offshore WTG

Sensorinstallation im Bypass

Kommunikationseinheit

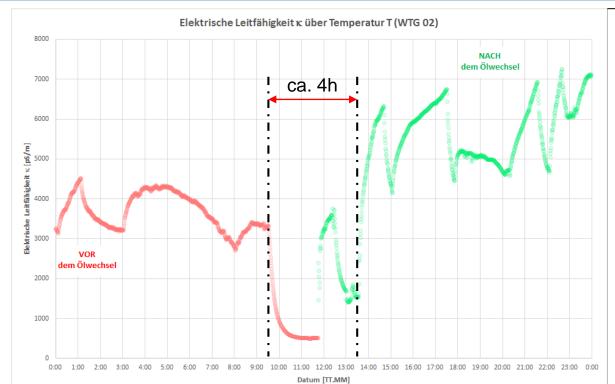
Messdaten: к vor / nach Olwechsel


WEA #01

Daten 03.06. - 07.06.2017

Signifikante Änderung der Temperaturabhängigkeit der elektrischen Leitfähigkeit κ vor und nach dem Ölwechsel.

Messdaten: ε_r vor / nach Olwechsel


WEA #01

Daten 03.06. - 07.06.2017

Signifikante Änderung der Temperaturabhängigkeit der relativen Permittivität ϵ_r vor und nach dem Ölwechsel.

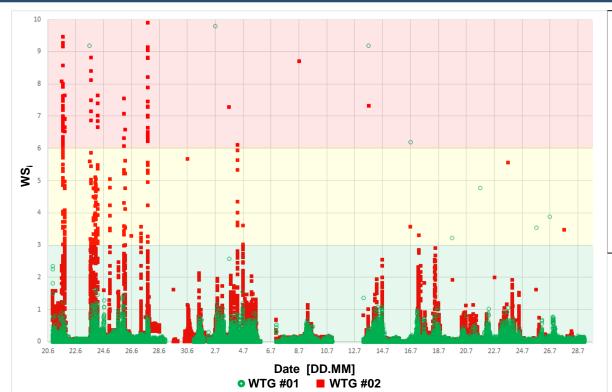
Messdaten: κ während des Ölwechsels

WEA #02 Detail

Daten 05.06.2017

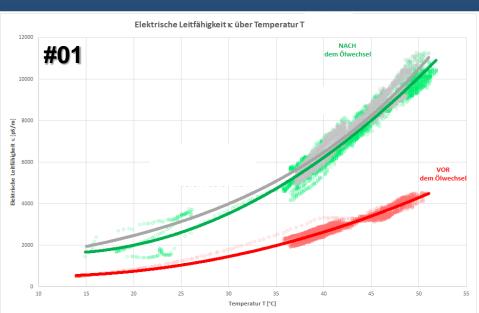
Dauer des Ölwechsels: ca. 4h

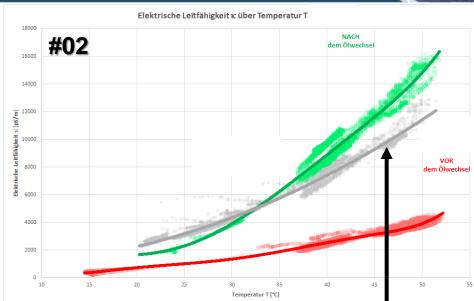
Das Ablassen des alten Öls und die Befüllung mit frischem Öl ist klar zu erkennen.


Der Einsatz eines Spülöls im Nebenstrom kann nicht bestätigt werden.

Felddaten einer Offshore WEA Schadensfall

Messdaten: WearSens® Index WSi


WEA #01 vs WEA #02 OFFSHORE


Der WearSens® Index **WS**_i COP (Critical Operation Protection) von WEA #02 zeigt eine höhere Dynamik als WEA #01.

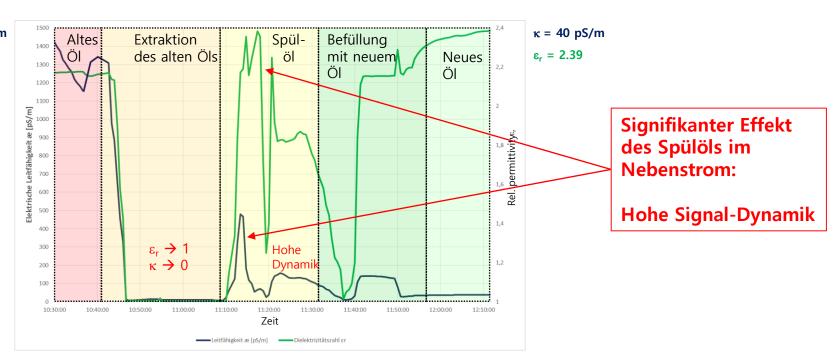
WEA #01 OFFSHORE WEA #02 OFFSHORE

Messdaten: WEA #02 Schadensfall

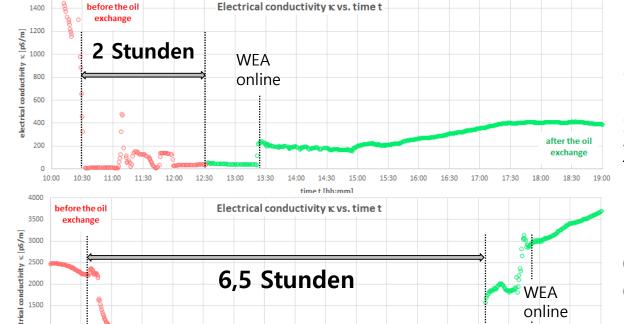
Der abnormale Rückgang der Leitfähigkeit bei WEA #02 deutet auf ein Problem im Getriebe hin. Es werden deutlich mehr Additive innerhalb kürzester Zeit verbraucht, als normal. Dieses Verhalten lässt sich in den Animationen der nächsten Folien weiter beobachten.

... mehr Daten von Onshore WEA

- 1) Messdaten eines Ölwechsel inkl. Spülung des Nebenstroms
- 2) Änderung der Leitfähigkeit nach Zugabe von 6% Frischöl



Messdaten: Onshore WEA, Ölwechsel


```
\kappa = 1450 pS/m
```

 $\varepsilon_r = 2.17$

Messdaten: Onshore WEA, Ölwechsel

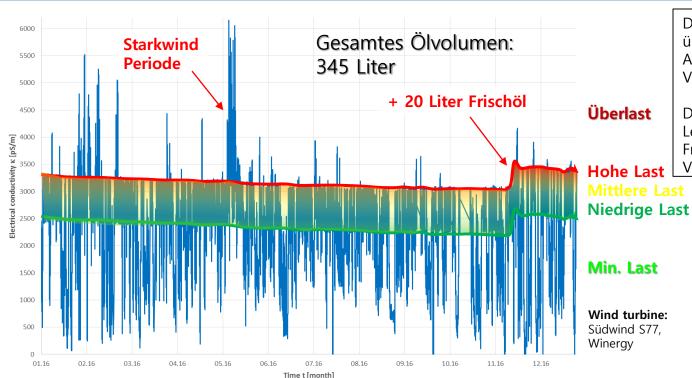
time t [hh:mm]

2 Stunden

Mit Spülvorgang im Bypass Speedwind Offshore, Zertifizierte Container-Lsg.

6,5 StundenOhne Spülvorgang in

Ohne Spülvorgang im Bypass Nicht zertifiziertes System


500

after the oil

exchange

Messdaten: Onshore WEA, 6% Frischöl

Daten der elektrischen Leitfähigkeit über einen Zeitraum eines Jahres: Absteigender Trendverlauf durch Verbrauch von Additiven

Deutliche Zunahme der elektrischen Leitfähigkeit nach Zugabe von 6% Frischöl auf das Gesamtvolumen Von 345 Liter

Eine neue Perspektive für die Windparkbetreiber & die technische Betriebsführung

Vorteile einer online Ölzustandsüberwachung

- Optimale Planung des n\u00e4chsten \u00f6lwechsels.
- o Überwachung / Benchmark des durchgeführten Ölwechsels.
- o Identifikation von erhöhtem Additiv-Abbau aufgrund kritischer Betriebsbedingungen
- Echtzeit Information über den Zustand des Getriebeöls und der WEA
- Erhöhte Sicherheit im Vergleich zu periodisch durchgeführten offline Ölanalysen
 - Die kontinuierliche Ölüberwachung der WEA ermöglicht eine bedarfsorientierte offline
 Laboranalyse.

Eine neue Perspektive für die Windparkbetreiber & die technische Betriebsführung

Kombination von zustandsbasierter Wartung & online Überwachung

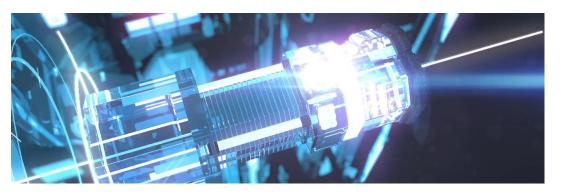
Verlängerung des Ölwechselintervalls

- o Reduzierte Kosten im Bereich: Operation & Maintenance
- Schutz der Umwelt und der Ressourcen

Online Öl-Überwachung in Kombination mit bestehender Schwingungsanalyse

- → Echtzeitinformation über den Ölzustand
- → Geringere Ausfallquote durch frühzeitige Identifikation von kritischen Betriebszuständen (Überlast, Kontamination, ...) → längere Betriebszeit
- → Vermeidung von teuren Stillstandzeiten und zusätzlichen, ungeplanten Wartungskosten
- → Erhöhte Verlässlichkeit bei frühster Fehlerdetektion, Vermeidung von Ausfällen, optimierte O & M Planung bei gleichzeitiger Kostenersparnis.

Vielen Dank für Ihre Aufmerksamkeit!



Prof. Dr. Manfred R. Mauntz Dr. Jörn Peuser cmc Instruments GmbH Rudolf Diesel Straße 12 A D - 65760 Eschborn

Tel.: +49 6173 32 00 78

E-Mail: MRM@cmc-instruments.de

